Transportation
Proving x y z Using Inequalities and Substitutions
Proving x y z Using Inequalities and Substitutions
In this article, we will explore a detailed step-by-step process to prove that x y z given the equation:
(frac{x^2}{y^2} cdot frac{y^2}{z^2} cdot frac{z^2}{x^2} frac{x}{y} cdot frac{y}{z} cdot frac{z}{x})
Introduction
We will introduce new variables and manipulate the equation using inequalities and substitutions to prove that x y z. This approach showcases a methodical and rigorous mathematical proof technique.
Introducing New Variables
Let's define three new variables:
a frac{x}{y} b frac{y}{z} c frac{z}{x}These substitutions will help simplify our original equation and make the subsequent steps more manageable.
Substituting and Simplifying
Given the substitutions, we can rewrite our original equation as:
(a^2 cdot b^2 cdot c^2 a cdot b cdot c)
This can be further simplified to:
(a^2 cdot b^2 cdot c^2 - a cdot b cdot c 0)
Completing the Square
To further simplify the equation, we can complete the square:
((a - frac{1}{2})^2 (b - frac{1}{2})^2 (c - frac{1}{2})^2 - frac{3}{4} 0)
This simplifies to:
((a - frac{1}{2})^2 (b - frac{1}{2})^2 (c - frac{1}{2})^2 frac{3}{4})
Analyzing the Equation
The expression on the left is a sum of squares, which is always non-negative. For the equality to hold, each term must be equal to zero:
(a - frac{1}{2} 0)
(b - frac{1}{2} 0)
(c - frac{1}{2} 0)
Therefore, we have:
(a frac{1}{2}, b frac{1}{2}, c frac{1}{2})
Returning to Original Variables
Reverting back to the original variables, we get:
(frac{x}{y} frac{1}{2}, frac{y}{z} frac{1}{2}, frac{z}{x} frac{1}{2})
From (frac{x}{y} frac{1}{2}), we find:
(x frac{1}{2} y)
From (frac{y}{z} frac{1}{2}), we find:
(y frac{1}{2} z)
From (frac{z}{x} frac{1}{2}), we find:
(z frac{1}{2} x)
Finding the Relationship
Substituting (y frac{1}{2} z) into (x frac{1}{2} y), we get:
(x frac{1}{2} left( frac{1}{2} z right) frac{1}{4} z)
Substituting (z frac{1}{2} x) into (x frac{1}{4} x), we get:
(x frac{1}{4} left( frac{1}{2} x right) frac{1}{8} x)
This implies that (x 0) or (x y z).
Conclusion
Therefore, the only solution satisfying the given equation is:
(x y z)
We have thus shown that all three variables must be equal.